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Abstract

Machine learning has not yet succeeded in the design of robust |earning algorithms
that generalize well from very small datasets. In contrast, humans often generalize
correctly from only a single training example, even if the number of potentially
relevant features is large. To do so, they successfully exploit knowledge acquired
in previous learning tasks, to bias subsequent learning.

This paper investigates learning in alifelong context. Lifelong learning addresses
situationswhere alearner faces a stream of learning tasks. Such scenarios provide
the opportunity for synergetic effects that arise if knowledge is transferred across
multiple learning tasks. To study the utility of transfer, several approaches to
lifelong learning are proposed and evaluated in an object recognition domain. It
is shown that all these algorithms generalize consistently more accurately from
scarce training data than comparable “ single-task” approaches.



1 Introduction

Supervised learning (pattern classification and regression) is concerned with ap-
proximating unknown functions based on examples. More specifically, given a set
of input-output tuples of an unknown function which might be distorted by noise,
the goa of supervised learning is to construct a generalization of the data that
minimizes the weighted prediction error on future data.

Since deducing the output of unseen, future data isimpossiblewithout making
further assumptions [31, 68, 19, 73], every learning algorithm makes inherent
assumptions concerning the nature of thedata. These assumptions—oftenreferred
to as hypothesis space, preferences, or prior, and henceforth called bias [30]—
enables an algorithm to favor one particular generalization over al others, hence
to generdlize. The choice of bias is crucial in machine learning, as it represents
both the designer’s knowledge and his/her ignorance about the domain. In some
approaches, bias is obtained explicitly through the expertise of a human expert
of the domain, communicated by symbolic if-then rules [33, 12, 65, 41, 40, 38].
In others, it arises from an uninformed set of equations, as is the case in neural
network Back-Propagation [72, 71, 48] or inductive tree learning [45, 17, 22], to
name two popular examples.

All these approaches have in common that the available data consists exclu-
sively of input-output examples of the target function. While this framework
facilitates the precise study and evaluation of machine learning approaches, it dis-
missesimportant aspects that are crucia for the way humanslearn. One of the key
aspects of human learning is the fact that they face a stream of learning problems
over their entire lifetime. When learning a skill as complex as driving a car, for
example, years of learning experience with basic motor skills, typical traffic pat-
terns, communication, logical reasoning, language, and much more precede and
influence this learning task. To date, virtually al approaches studied in machine
learning are concerned with learning a single function based on a single data set
only, isolated from a more general learning context.

Studying learning in a “lifelong” context provides the opportunity to transfer
knowledge between learning tasks. For example, in [1, 2] psychologica exper-
iments are reported in which humans acquire complex language concepts based
on a single training example. The learning problem studied there involves the
distinction of relevant from irrelevant features to generalize the training example.
It is shown that humans can spot rel evant features very well, even if the number of
potentially relevant features is huge and the target concept is rather complex. As
arguedin[1, 2], the ability to do so relies on previously learned knowledge, which
had been acquired earlier inthelifetimeof thetested subjects. Another recent study



[37] illustratesthat humansemploy very specific routinesfor the robust recognition
of human faces, so that they are able to learn to recognize new faces from very few
training examples. In these experiments, it is shown empirically that the recogni-
tion rate of faces in an upright position is significantly better than that of facesin
an inverted position. As argued there and in [26], this finding provides evidence
that humans can transfer knowledge for the recognition of faces across different
face recognition tasks—unless the human visual system is genetically pre-biased
to the recognition of upright human faces (in which case evolution learned a good
strategy for us).

This paper studies machine learning algorithms that can transfer knowledge
across multiple learning tasks. We are interested in situations where a learner
faces a collection or learning tasks over its entire lifetime. If these tasks are
appropriately related, such a lifelong learning problem provides the opportunity
for synergy. When faced with the n-th learning task, there is the opportunity to
transfer knowledge acquired in the previous n — 1 learning tasks, to save datain
the n-th one. In other words, thefirst » — 1 learning tasks may be used to acquire
aknowledgeable, domain-specific biasfor the n-th learning task. The acquisition,
representation and use of bias are therefore the key scientific issuesthat arisein the
lifelong learning framework.

Instead of the general problem, this paper considers a restricted version of
the lifelong learning problem. In particular, the following assumptions are made
throughout the paper:

1. Concept learning. We assume that the learner only encounters concept
learning (pattern classification) tasks, which are defined over ad-dimensional
feature space. A concept learning task is a supervised learning task in
which there are only two possible output values, 1 and 0. The k-th concept
learning tasks (withk = 1, .. ., n) involveslearning a classification function
fF w4 — {0, 1} that maps patternsin R to two classes, 1 and 0. The set
of training datafor the £-th learning tasks is denoted by

X = ek by li= 1. N8 1)

Here =¥ denotes the i-th input pattern in X*, y* the corresponding class
label, and N* the cardinality of the training set. A pattern = is member of
the k-th concept, if and only if f*(z) = 1.

2. Support sets. All data is assumed to be available at al time. Therefore,
when learning the »-th concept, the learner is given a training set X" of
examples and counterexamples of the concept defined by f” (which might



be distorted by noise), and » — 1 datasets X1, X2, ..., X"~ that stem from
previous concept learning tasks.

Notice that data in X1, X2, ..., X"~1 can generally not be used directly
to augment the training set X, since they carry the wrong class labels.
However, they may support learning /™, and are therefore called support
sets.

3. Relatedness. The functions f1, f2,..., f* are drawn from a family of
functions, denoted by /. The nature of I is not completely known in the
beginning of lifelong learning.

A practical example of thisframework is a mobile robot whose task is to find and
fetch various objects, using its camera for object recognition. Each object defines
a recognition function, f : ®Y — {0, 1}, which maps camera images = € R¢
to 1, if and only if the object is contained in the image. Consequently, the set
F isthe set of al recognition functions, one for each (potential) object. When
learning to recognize the n-th object, the training set X™ consists of positive and
negative examples of that object. The support sets X%, X?,..., X! contain
labeled examples and counterexamples of other objects. Notice that all functions
in F are invariant with respect to rotation, translation, scaling in size, change of
lighting, and so on. Identifying F' involves the identification of these invariances.
Hence, given that the learning agorithmis able to learn these and use them to bias
subsequent learning, the support sets can reduce the need for training data when
learning to recognize the n-th object.

The goal of this paper is to demonstrate that more complex functions can be
learned from less training data, when embedded in a lifelong learning context.
Lifelong learning goes beyond the intrinsic bounds associated with learning single
functionsin isolation. The remainder of this paper is organized as follows. The
following section introduces the basic terminology of base-level and meta-level
learning, and sheds light onto the relation of conventiona function fitting and
learning bias. Sections 3 and 4 present four approaches to lifelong learning, which
extend conventional memory-based and artificial neural network algorithms by a
strategy for learning bias. Subsequently, in Sections 5 and 6, lifelong learning is
investigated empirically in the context of object recognition, and theoreticaly in
the context of PAC-Learning. The results support our claim that independently
of the particular learning approach, lifelong learning approaches are superior to
conventional algorithms. The final sections review relevant literature and discuss
open problems of the approach taken here.
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Figure 1: Metalevel learning—an example. The circles Ho, Hy, . .. represent
different base-level hypothesis spaces. Target functions are drawn from F'.

2 LearningBias

Transferring knowledge across learning tasks involves learning bias. If alearner
would approach the n-th learning task with the same, static bias as by which it
learnsitsfirst one, there would be no way to improveits ability to learn. A simple
example of learning biasis shown in Figure 1. Different biases are represented by
different hypothesissets [32] (preferences within these hypothesis sets are ignored
to simplify the presentation). Suppose that all target functions are sampled from
a specific class of functions F, and suppose the learner can chose its bias from
{Ho, H1, ..., Ha} prior to the arrival of the training examples for the n-th target
function f™. Of the biases shown in Figure 1, H, is superior to al others. Hy is
more appropriate than H, and Hz, since it includes F' completely while the | atter
ones do not. It isaso more appropriate than Hg and H1, since it is more specific
than those. Consequently, if the learner starts learning a function sampled from F
using the hypothesis space Hy, it will conceivably require less training data than
if it had used Hg or H; asinitial hypothesis space, and generalize more accurately
than with H, or H3z. Since previous learning tasks also are sampled from F,
learning that H,4 isthebest biasin { Ho, H1, ..., Ha} appears to be feasible.
Following the terminology in [46], we will refer to the problem of learning
bias as the meta-level learning problem. The conventiona learning problem,
which involves learning functions, will be referred to as the base-level learning



base-level meta-level

example (=, [*(x)) X = {(a, fH(2))}
training set X" = {{o, £ (2))} (X = {{{o, S @)))
hypothesis h:l—O Hc{flf:I— 0}
hypothesis space HcA{flf:1— 0O} HCed{fIf: T — O}
target concept frer F
objectivefunction | Y Probs(z) ||f"(z) = h(@)|| | > Prob(x)[|f"(z) - h(z)]]

(_> mln) zEX™ TEX™

Table 1: The base-level and the meta-level in lifelong supervised learning. Here p
denotes the power set, and Prob ¢» denotes the sampling distribution for the n-th
dataset.

problem. Both learning problems are closely related. Simplified speaking, entities
a the meta-level are power sets of the corresponding entities at the base-level, as
depictedin Table1l. Ascan beseen there, thebase-level isconcerned with selecting
a function  from a set of hypotheses H. The meta-level involves learning an
entire space of functions, since its result is an entire base-level hypothesis space
H . Consequently, a meta-level hypothesis spaceis a set of sets of functions, each
of whichisapotential base-level hypothesisspace. Training examples at the base-
level are input-output tuples. Training examples at the meta-level are support sets,
which are entire sets such tuples.

Clearly, there can be no useful bias-free learning at the meta-level any more
than there can be at the base-level. If nothing is known about the relation between
different base-level |earning tasks, therewill be no reason to believe that meta-level
learning will improve base-level learning for reasons other than pure chance. The
hypothesis spaces shown in Figure 1 congtitutes one example of meta-level bias.
If the meta-level is equipped with the bias H = {H1, Hy, H3, Ha}, it is biased
towards picking one of those four sets as base-level hypothesisspace, ignoring the
myriad of aternative ways of combining sets of functions. To learn successfully
at the meta-level, the support sets must provide information as to which base-level
biasis most appropriate. If, for example, previous learning tasks involve functions
f drawn exclusively from £, the learner could useits support setsto determine the
most specific function space in # that includes all previous functions.

Despite these similarities, there are the differences between meta-level and
base-level learning.



1. Given aparticular target function, f* € F, the ultimate goal of learning in
then-thlearning task isto minimizethe prediction error for f*. Recognizing
F isasecondary goal. It isonly useful insofar it supportslearning f”.

2. Each support set X' (1 < i < n) establishes asingle training pattern at the
meta-level. However, X' usually does not specify f* uniquely. Instead, it
provides a potentially small and noisy set of input-output examples of f.

3. Support setsmay vary in cardinality; thus, training examplesat themeta-level
may vary in length.

4. Each support set X* provides a positive example for the “meta-concept” F.
Negative examples are not available at the meta-level.

The following sections do not present just one particular approach to lifelong
learning. In order toinvestigatethe genera principlesthat are at stakeinthis paper,
severa are described, some of which have been motivated by or adopted from
recent literature. These approaches are compared with learning algorithms that
do not transfer knowledge. The comparison, along with a PAC-learning analysis
of lifelong learning, demonstrates that more complex functions can be learned
from less training data is bias is learned at the meta-level—independently of the
particular learning approach.

3 Memory-Based Approaches

The first two lifelong approaches investigated here are memory-based |earning
algorithms (MBL). Memory-based approaches memorize all training examples
explicitly, and interpolate between them at query-time. Notice that memory-
based |earning has been applied with significant success to avariety of challenging
learning problems[35, 51, 69]. Inwhat follows, wewill first sketch two well-known
approaches to memory-based learning, then propose meta-level components that
take the support setsinto account.

3.1 Nearest Neighbor

Probably the most widely used memory-based learning agorithm is K -nearest
neighbor (KNN) [15, 57]. Suppose z isaquery pattern, for which we would like
to know the output y = f"(2). KNN searches the set of training examples X"
for those K examples (z",y") € X™ whose input patterns 2" are nearest to z
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Figure 2: Re-representing the data to better suit memory-based algorithms.

(according to a distance metric, e.g., the Euclidian distance). In the context of
concept learning, KNN returns the majority vote of the K nearest neighbors:

1 " _J 1 ifz>05
U(KZ%) where  o(z) ._{ 0 if2<05 2

3.2 Shepard’sMethod

Another popular methodisdue to Shepard [54]. When computing the i for aquery
point x, Shepard’s method averages the output values of all training examplesin
X"™. However, it weights each example (z,7) € X™ according to the inverse
distance to the query point z.

-1
j 1
s(z) = ( Z %) ( Z %) (©)
(i,@)eX"”x_xH—l_n <£7@>€Xn||$—$||—|—77

Heren > Oisasmall constant that prevents numerical overflows.

Noticethat both memory-based | earning methods (KNN and Shepard’s method)
use exclusively the training set X for learning. There is no obvious way to
incorporate the support sets, since those examples carry the wrong class labels.

3.3 Learning Representations

How can one use the support sets to boost generalization? It is well-known that
the generalization accuracy of an inductive learning agorithm depends on the
representation of the data. Thisis especially the case when training datais scarce.
Hence, one way to exploit support sets in lifelong learning is to develop data
representationsthat better fit the generalization properties of the inductivelearning
algorithm. Asshown in Figure 2, data can be re-represented by afunction, denoted
by g : I — I’, whichmapsinput patternsin I to anew space, I’. Thisnew space I’



formstheinput space for amemory-based algorithm. Thisraisesthe questionsasto
what constitutes agood data representati on for memory-based learning algorithms.

Obviously, agood transformation ¢ maps multipleexamples of asingle concept
to similar representations, whereas an an example and a counterexample should
have distinctly different representations. This property can directly be transformed
into an “energy function” for ¢ [62]:

n—1
Eo=> 3 > le@)-g9@)I -
k=1 (zy=1eX* \ (2,0)eX* =y (x)
Yo la@)—g@] (4)
(Z,9)eX*k g#y (x%)

Adjusting ¢ to minimize £ forces the distance (x) between pairs of examples of
the same concept to be small, and the distance () between an example and a
counterexample of a concept to be large. Memory-based learning is then per-
formed on the re-represented training set {(¢(z), y) } (with X = {(z, y)}). Inour
implementation, ¢ is realized by an artificial neural network and trained using the
Back-Propagation a gorithm [48].

It isimportant to notice that the transformation g is obtained using the support
sets. In the object recognition example described in Section 1, g will—in the ideal
case—map images of the same object to an identical representation, regardless of
whereintheoriginal imagetheobject appears. Suchag entail sknowledgeabout the
invariances in the object recognition domain. Hence, learning data representations
is one way to change bias in a domain-specific way.

34 Learning To Compare

An dternative way for exploiting support sets in the context of memory-based
learning isto learn thedistancefunction. Oneway to dothisistolearn acomparator
d:Ix1—[0,1][63]. A comparator d accepts two input patterns, say = and
z, and outputs 1 if « and z are members of the same concept, and O otherwise.
Consequently, each training example for d is obtained using a pair of examples

(z,y) and (3,9) € X* taken from an arbitrary support set X* (for al & =
1,....n—1):

(2,2),1)  if y=1and j=1
((2,2),0)  if (y=1and =0) or (y=0and j=1) (5)
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If both examples (z, y) and (z, 7j) belong to the same concept class £, they form a
positiveexamplefor d (first casein (5)). Negative examplesfor d are composed of
an example and a counterexample of aconcept (second casein (5)). Consequently,
each support set X* produces | X *|? training examples for d. Since the training
examples for d lack information concerning the concept for which they were
originally derived, al support sets can be used to train d.

When learning a new concept, the comparator d can be used instead of a pre-
given, static distance function. For each query point 2 € [ and each positive
training example (z, 7) € X", the output of the comparator d(z, #) measures the
belief

Bel(f"(z) =11 f*(&) = 9) ©6)

that = is a member of the target concept f™ according to d. Since the value of
d(x, ) depends on the training example (z, 3), the belief (6) is conditioned on
(&.7).

Obviously, Equation (6) delivers the right answer when only a single positive
training exampleisavailable. If multipleexamples are availablein X, their votes
can be combined using Bayes' rule[42], leading to

Bel(f"(z)=1) = 1- R @)
L+ H 1-d(z,2)
(2,5=1)eXx " '

The somewhat lengthy derivation of (7), which isgiven in [61], is straightforward
if one interprets the output of d as a conditiona probability for the class of a
query point = given atraining example (z, i), and if one assumes (conditionally)
independent sampling noise X ™. Since (7) combines multiple votes of the com-
parator d using the training set X, the resulting learning scheme is a version of
memory-based learning. In the experiments reported below, d is implemented by
an artificial neural network. Notice that d is not a distance metric, because the
triangle inequality need not hold, and because an example of the target concept z
can provide evidence that = is not amember of that concept (if d(x, ) < 0.5).

In the context of lifelong learning, learning d can be considered a meta-level
learning strategy, since it biases memory-based learning to extrapolate training
instancesinadomain-specificway. For example, intheaobject recognition example,
d outputs—ideal ly—thebelief that two images show the same object (regardless of
theidentity of theobject). Tocomparetwo images, d must possess knowledge about
the invariances in the object recognition domain. By learning d, this invariance
knowledgeis transferred across multiple concept learning tasks.
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Figure 3: Re-representing the data to better suit neural network learning.

4 Neural Network Approaches

To make our comparison more complete, wewill now describelifelong approaches
that rely exclusively on artificial neural network representations. Neural networks
have been applied successfully to a variety of real-world learning problems [47,
43, 49].

4.1 Back-Propagation

Probably the most common way to learn a function f» : ¢ — {0, 1} with an
artificial neural network isto approximateit using the Back-Propagation algorithm
(or a variation thereof). The network that approximates f™ might have d input
units, one for each of the d input features, and a single output unit that encodes
class membership. Such an approach is unable to incorporate the support sets,
since their examples carry the wrong concept labels.

4.2 Learning Representations For Neural Networks

As argued in Section 3.3, the generalization accuracy of an inductive learning
algorithm depends on the representation of the data. In the context of neura
network learning, severa researchers have proposed methods for learning data
representationsthat aretail ored towardsthe built-in bias of artificial neural networks
[58, 52, 44,9, 5]. Thebasicideahereisthe sameasin Section 3.3. To re-represent
the data, these approaches train a neura network, g : I — I’, which maps input
patterns in / to a new space, I’. This new space I’ forms the input space for
further, task-specific neural network learning. The overall architecture is depicted
in Figure 3.

The question of what representation forms a good basis for neural network
learning is not as easily answered asit is in the context of memory-based learning.
Basically, al theapproachescited aboverely ontheobservationthat thearchitecture
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depictedin Figure 3 can be considered asingleneura network. Hence, itispossible
to use standard Back-Propagati on to tune theweightsof thetransformation network
g, dong with the weights of the respective classification network. While some
authors [52, 44] have proposed to process the support sets and the training set
sequentially, others [58, 9, 5] are in favor of training ¢ in parallel, using al »
tasks simultaneously. Sequentia training offers the advantage that not all training
data has to be available at all time. However, it faces the potential burden of
“catastrophic forgetting” in Back-Propagation, which basically arises from the
fact that the training data in the sequential case is sampled using a non-stationary
probability distribution. Both strategies|earn at the meta-level through developing
new data representations.

4.3 Explanation-Based Neural Network Learning

The remainder of this section describes a hybrid neural network learning algorithm
for learning f™. Thisalgorithmisaspecia version of both the Tangent-Prop algo-
rithm [56] and the explanation-based neural network learning (EBNN) agorithm
[34, 61]. Here we will refer to it as EBNN.

EBNN approximates ™ using an artificial neural network, denoted by / :
I — [0, 1], just like the conventional Back-Propagation approach to supervised
learning. However, in addition to the target values given by the training set X",
EBNN a so constructsthe slopes (tangents) of thetarget function f at the examples
in X. More specifically, training examplesin EBNN are of the type

(2, [*(2), VoS (2)) . (8)

The first two terms in (8) are just taken from the training set X™. Obviously,
as illustrated by Figure 4, knowing the slope of the target function (third termin
(8)) can be advantageous. Thisis because this slope measures how infinitesimal
changes of the features of = will affect its classification, hence can guide the
generalization of thetraining example. However, thisraises the question asto how
to obtain slopeinformation.

Thekey to applying EBNN to concept learning liesin the comparator function
d described in Section 3.4. In EBNN, d hasto be represented by aneura network,
hence is differentiable. The slope V. f"(z) is obtained using d in the following
way. Suppose (z, ) € X™ isapositivetraining examplein X, i.e, g = 1. Then,
the function d; : I — [0, 1], defined as

da(z) = d(z7) 9)

11
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Figure 4: Fitting values and slopes. Let f" be the target function for which three
examples (z1, (1)), (z2, f"(22)), and (z3, f"(z3)) are known. Based on these
points the learner might generate the hypothesis ;. If the slopes are aso known,
the learner can do much better: h;.

mapsasingleinput = patternto [0, 1], and isan approximation of thetarget function
f™. Sinced(z, z) isdifferentiable, the gradient

ddz(z)

5, (10)
isdefined and isan estimate of theslopeof f” at z. Setting z := = yieldsthedesired
estimateof V, /™ (z) (cf. (8)). When refining the weights of the target network that
approximates f™, for each training example = € X" both the target value " (z)
and the slope vector V. /" (z) are approximated using the Tangent-Prop algorithm
[56].

The slope V. /7, if correct, provides additional information about the target
function f*. Since d is learned using the support sets, the EBNN approach
transfers knowledge from the support sets to the new learning task. To improve
the generalization accuracy, d hasto be accurate enough to yield hel pful sensitivity
information. However, since EBNN fits both training patterns (values) and slopes,
misleading slopes can be overridden by training examples.

Noticeif multiple positiveinstances are availablein X", slopes can be derived
from each one. In this case, averaged slopes are used to constrain the target
function:

1 od(z,x
Ved(z) = X > % (11)

Zpos€ X pos

Here X5 C X" denotes the set of positive examplesin X™. The application of
the EBNN algorithm to learning with invariance networksis summarized in Table
2.

Generally speaking, slope information extracted from the comparator network
isalinear approximation to the variances and invariances of F' at a specific point

12



1. Let Xjos C X" bethe set of positivetraining examplesin X ™.
2 Let X' =10
3. For each training example (z, f™(z)) € X do:

1 Z dd(x)(pos)
| X ol . oz

pos € X pos

(@ ComputeV . d(z) = usingd.

(b) Let X' = X' + (a, f"(x), Vd(2))
4. FitX'.

Table 2: Application of EBNN to learning multiple concepts.

in 7. Alongtheinvariant directions slopeswill be approximately zero, while along
others they may be large. For example, in the aforementioned object recognition
domain, color might be an important feature for classification while brightness
might not be. Thisistypicaly the case in situations with changing illumination.
In this case, the comparator network ideally ignores brightness, hence the slopes
of its classification with respect to brightness will be zero. The slopes for color,
however, would be larger, given that color changes imply that the object would
belong to adifferent class.

5 Experimental Results

5.1 Description of the Testbed

To illustrate the utility of meta-level learning when training data is scarce, we
collected adatabase of 700 col or cameraimagesof seven different objectsdescribed
in Table 3. The objects were chosen so as to provide color and size cues helpful
for their discrimination. The background of all images consisted of plain, white
cardboard. Different images of the same object varied by the relative location and
orientation of the object within the image. In 50% of all images, the location of
the light source was al so changed, producing bright reflections at random locations
in various cases. In some of the images the objects were back-lit, in which case
they appeared to be black. Example images of al objects are shown in Figure 5
(Ieft columns). Figure 6 shows examples of two of these objects, the shoe and the

13



Object color size

bottle green medium

hat blueand white  large

hammer brown and black medium

can red medium

book yellow depending on perspective
shoe brown medium

sunglasses | black small

Table 3: Objectsin the image database.

sunglasses, to illustrate the variations in the images. 100 images of each object
were available. In all our experimentsimages were down-scaled to a matrix of 10
by 10 triplets of values. Each pixel of the down-scaled image was encoded by a
color value (color is mapped into a cyclic one-dimensional interval), a brightness
value and asaturation value. Noticethat these values carry the sameinformation as
conventional RGB (red/green/blue). Examples of down-scaled images are shown
in Figures 5 (right columns) and 6. Although each object appears to be easy to
recognize from the original image, in many cases we found it difficult to visualy
classify objects from the down-sampled images. In this regard, down-scaling
makes the learning problem harder. However, down-sampling was also necessary
to keep the networks at a reasonable size.

Finding a good approximationto f™ involves recognizing the target object in-
variant of rotation, tranglation, scaling in size, change of lighting, and so on. Since
theseinvariances are common to all object recognition tasks, images showing other
objects can provide additiona information and, thus, boost the generalization ac-
curacy. Inall our experiments, the n-th learning task was the task of recognizing
one of these objects, namely the shoe. The previous n — 1 learning tasks corre-
sponded to recognizing five other objects, namely the bottle, hat, hammer, coke
can, and book. To ensure that the latter images could not be used simply as addi-
tional training data for f*, the only counterexamples of the shoe were images of
aseventh object, the sunglasses.! Hence, the training set for ™ contained images

!Since both the positive and negative examples in X™ form a disjunct class of images, it is
possible to treat positive and negative examples symmetrically (in all lifelong learning approaches).
For example, EBNN derives slopesnot only for positive training examples, but also for negative ones.
See[63, 61] for more details.

14



Figure 5: Objects (left) and corresponding input representations (right).

of the shoe and the sunglasses, and the support sets contained images of the other
five objects. Each experiment was performed 100 times under different (random)
initial conditions, in order to increase our confidence in the results.

5.2 ResultsFor A Single Training Instance

Transfer of knowledge is most important when training data is scarce. Hence, in
an initial experiment we tested all methods using a single image of the shoe and
the sunglasses only. Those methods that are able to transfer knowledge were also
provided 100 images of each of the five supporting objects.

The results are intriguing. The generalization accuracies depicted in Table
4 illustrate that all approaches that learn at the meta-level generalize significantly
better than thosethat do not. With the exception of the neural network hint-learning
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Figure 6: Examplesthat illustrate some of the variationsin the database.

approach, they can be grouped into two categories: Those which generalize ap-
proximately 60% of the testing set correctly, and those which achieve roughly 75%
generalization accuracy (for comparison: random guessing produces 50% accu-
racy). Theformer group containsthe conventiona supervised learning algorithms,
and the latter contains the lifelong approaches. The differences within each group
are statistically not significant, while the differences between the groups are (at
the 95% confidence level). These results suggest that the generalization accuracy
merely depends on the particular choice of the learning agorithm (e.g., memory-
based vs. neural networks). Instead, the main factor determining the generalization
accuracy is the fact whether or not knowledge is transferred from past learning
tasks.

5.3 Increasing the Number of Training Example

What happens as more training data arrives? Figures 7 and 8 show generalization
curves with increasing numbers of training examples for some of these methods.
Asthe number of training examplesfor then-th learning task increases, theimpact
of the meta-level learning strategy decreases. After presenting 20 training exam-
ples, for example, some of the standard methods (especially Back-Propagation)

16



not using support sets using support sets
KNN Shepard | BP || Shepard | compa- | BP | EBNN
K=1| K=2 repr. g | ratord | repr. g
Section 31 31 3.2 41 3.3 34 4.2 43
Accuracy 60.4%| 50.0%| 60.4% | 59.7%| 74.4% | 75.2% | 62.1%| 74.8%
Std. deviation 8.3% | 0.0% 8.3%| 9.0% 185% | 18.9% | 10.2%| 11.1%
Conf.interval || 59.2%)| 50.0%| 59.2%| 57.9% 59.8% | 72.6% | 59.8%| 72.6%
(forthemean) || 61.6%| 50.0%| 61.6%| 61.4% 64.3% | 77.9% | 64.2%| 77.0%
statistical confidencein the difference
KNN, k=1 100% 0.0% | 76.8% 100%| 100%| 90.0% | 100%
KNN, k=2 100% 100%| 100% 100%| 100%| 100%| 100%
Shepard 0.0% | 100% 76.8% 100%| 100%| 90.0% | 100%
Backprop. 76.8% | 100%| 76.8% 100%| 100%| 95.4% | 100%
Shepard with g || 100%| 100% 100%| 100% 68.2% | 100%| 60.1%
comparator d 100%| 100% 100%| 100%| 68.2% 100%| 60.2%
BPwith g 90.0% | 100%| 90.0% | 95.4% 100%| 100% 100%
EBNN 100%| 100% 100%| 100%| 60.1% | 60.2% | 100%

Table 4: Statistical comparison for the methods described in this paper, when
presenting two training examples and five support sets. Thefirst three rows show
the mean accuracy, its standard deviation and the 95% confidence interval for
the mean. The bottom table shows the confidence in the statistical difference of
the individua approaches. Values smaller than 95% (printed in bold) indicate
that the observed performance difference is not statistically significant at the 95%
confidence level.

generalize about as accurately as those methodsthat exploit support sets. Here the
differencesin the underlying learning mechani smsbecomes more dominant. How-
ever, when comparing lifelong learning methods with their corresponding conven-
tiona approaches, the latter ones are still consistently inferior: Back-Propagation
(88.4%) is outperformed by EBNN (90.8%), and Shepard’'s method (70.5%) and
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Figure 7: Memory-based approaches: Generaization accuracy as a function of
training examples, measured on an independent test set and averaged over 100
experiments. 95%-confidence bars are also displayed.

KNN (81.0%) generalizelessaccurately when therepresentationislearned (81.7%)
or when the distance functionislearned (87.3%). All these differences are signifi-
cant at the 95% confidence level.

5.4 Degradation

All results reported up to this point employ al five supporting objects at the meta-
level. They all show that across the board, learning at the meta-level improves the
generalization accuracy when al five support sets are used. However, a natura
guestion to ask is how the different approaches degrade as fewer support sets are
available. Will the base-level approach be powerful enoughto override wrong (and
thus misleading) meta-level knowledge? Or will a poorly trained meta-level make
successful generalization impossible at the base-level ?

The answers differ for different lifelong learning approaches. To investigate
the degradation with the quality of the meta-level knowledge, two different lifelong
learning approaches were evaluated: (8) EBNN and (b) memory-based learning
using the comparator as distance function. Both these approaches rely on the
(identical) comparator network d. However, they trade off their meta-level and
base-level component quite differently. When using the comparator in memory-
based |earning, a poorly trained comparator can prohibit successful generalization,
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Figure 8: Neura network approaches: Generalization accuracy as a function of
training examples.

even if the training set X ishuge and noise-free. Thisisbasically because such
a network might not even recognize that two identical input patterns are in fact
identical. Consequently, there are cases in which regular memory-based |earning
(without a meta-level strategy) is expected to outperform the lifelong learning
approach. EBNN, on the other hand, uses Back-Propagation as its base-level
learning strategy. Hence, even in the presence of a poor comparator d, the built-in
bias of neural network Back-Propagation is conceivably able to override errorsin
the meta-level knowledge—an effect that was confirmed by extensive studies in
other application domains[39, 34].

Theresults shown in Figure 9 confirm our expectations. Theresultsfor EBNN,
shown in the left diagram, are approximately the same as long as support sets
are available (approximately 74% generalization accuracy). Hence, even a poorly
trained comparator d still improves the overall generalization accuracy in EBNN.
When d is untrained, i.e., its weights are random, the generalization accuracy
of EBNN (60.7%) does not differ significantly from that of Back-Propagation
(59.7%).

The generalization accuracy of the comparator d (right diagram) depends
stronger on the number of support sets and does not degrade as gracefully. While
with two support sets, the comparator d generalizes approximately 65.3% of all
test examples correctly, it classifies 75.2% of them correctly when given al five
support sets. When no support sets are avail able, the comparator produces random
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(a) EBNN (b) comparator network d
1007 1009

95% 95%
90% 90%
85% 85%
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Back- bottle bottle bottle hottle KNN bottle bottle bottle hottle
Propagation| cap cap Shepard cap cap
coke can coke can coke can coke can
support sets hammer support sets hammer

Figure 9: Generalization accuracy as afunction of the support sets, (a) for EBNN,
and (b) for thecomparator network d. Two training exampleswere used at the base-
level. Theerror barsindicate a95% confidenceinterval for the statistical mean. For
comparison, the corresponding conventional approaches are also depicted. Every
experiment was repeated 100 times using different base-level training and testing
sets.

results (50% generalization accuracy), hence is clearly inferior to al other meth-
ods studied here, including conventional memory-based approaches with a fixed
distance metric (e.g., KNN and Shepard: 60.4%).

Itissomewhat surprisingthat d generalizes better when given three support sets
than when given four. This difference is statistically significant at the 95% level.
At first glance, one might interpret this finding as evidence that seeing images of
the red coke can is counter-supportive. However, this conclusion is questionable
in the light of the following two observations. Firstly, the same phenomenon
does not appear in EBNN, despite the fact that the same training and testing data
were used. Secondly, the performance difference disappears when more than two
training examples are available. This can be seen in Figure 10, which depicts
the generalization accuracy of the comparator approach with varying numbers
of training examples and support sets. This figure clearly illustrates that the
generalization accuracy of comparator d increases (a) with the number of available
support sets, and (b) with the number of training examples in the n-th learning
task. Notice that the upper graph in Figure 10, which is obtained when using all
five support sets, is aso shownin Figure 7 (upper curve).
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Figure 10: Comparator network ¢g: Generalization curves for different numbers of
support sets.

6 Analysis

The empirical study provides one example of the successful transfer of knowl-
edge across multiple learning tasks. Why does it work? What are the general
mechanisms at work, and when will they succeed?

In the object recognition domain, the function family F’, from which all target
functions f1, f2,... were drawn, had a variety of properties. Some of these
properties, such as the invariances with respect to orientation and illumination in
object recognition, are unknown in the beginning of lifelong learning. Therefore,
the meta-level seeks to recognize these properties. For every property that has
been recognized, the meta-level can biasthe base-level learning accordingly, which
reduces the sample complexity when learning a new concept f € F. Inthissense,
the object recognition domain is an instance of a more genera problem class,
which involves the recognition of unknown properties of function classes at the
meta-level.

6.1 ThelLearning Mode

To make meta-level learning amendable to a forma analysis, more specific as-
sumptions must be made concerning the nature of hypothesisspaces on both levels.
Suppose the learner has an initial hypothesis space, denoted by H, which contains
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F. The properties of I are unknown in the beginning of learning. Instead, let
us assume there is a pool of m candidate properties, denoted by Pi, P, ..., P,
which thelearner iswilling to consider. Thus, thetask of the meta-level isto learn
which of its candidate propertiesisa property of F.

To facilitate our analysis, let us assume that each property P; (with j =
1,...,m)isonly validfor asubset of al functionsin H. Let p denote the fraction
of functionsin H which have property P; (for reasons of simplicity we assume p
isthesamefor al P;, 7 = 1,..., m). For example, if atenth of al functions have
property P; (e.g., only atenth of al functionsin H are invariant with respect to
rotation), then p = 0.1. Let usaso assume that all properties Py, P, ..., P, are
independent, i.e., that knowledge about certain properties of afunction f does not
tell us anything about the correctness of any other property. To further simplify
the analysis, let us make the somewhat unrealistic assumption that we have an
algorithm that can check (without error and in polynomial time) the correctness
of every property P; (with j = 1,...,m) for a support set X*—notice that in
practice, where support sets might contain noisy examples, this could require that
the support sets have to be unreasonably large. This simplistic model alows to
make assertions about the reduction of theinitial base-level hypothesis space when
learning .

Lemma. Any set of I propertiesthat isconsistent with all n— 1 support
setsY = { X"} will reduce the size of the base-level hypothesis space
by a factor of p'. The probability that this reduction removes the
target function f" from the base-level hypothesis space, which will be
considered afailure, is bounded above by p™~—1 - m/.

Hence, if I has [ properties, the meta-level algorithm will identify the correct
ones with probability p*. The resulting reduction of the hypothesis space can be
enormous, as illustrated by the following example.

Numerical Example 1. If p = 0.01, i.e,, every property applies only
to 1% of the functionsin H (and in F', unless a property isa property
of I), and if [ = 3 properties of m = 100 candidate properties are
known to be properties of I, the resulting base-level hypothesis space
will be reduced by afactor of 1076, If 10 support sets are available
(i.e, n = 11), the probability of removing f" accidently from the
base-level hypothesis space (a failure a the meta-level) is bounded
above by 1014,

The proof of the lemmais straightforward.
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Proof. According to the definition of p, asingle property cuts the hy-
pothesisspace H by afactor of p. Therefore, [ independent properties
cuts the base-level hypothesis space in p' which proves the first part
of the Lemma.

It remains to be shown that the probability of error is bounded above
by p»~1 - m!. Without loss of generality, consider a specific set of /
properties, say { P1, P, ..., P;}. The probability that these properties
are correct for all n — 1 support sets, athough at least one of them is
not aproperty of f”, isbounded above by p™~*. Thisis because there
must be at least one property in { Py, P», . .., P;} whichisnot property
of F'. Let P; denote this property. Then the probability that all » — 1
support functions have this property just by chanceisp™~1.

Thisargument applies to one specific set of [ properties. There are

() =

ways to select [ out of m candidate properties. The bound p™~1 - m!
follows from the subadditivity of probability measures. O

Notice that none of the above arguments depends on the particular learning algo-
rithm used at the meta-level. It is only required that the result of this algorithm,
a set of [ properties, be consistent with the support sets Y. Hence, any learning
algorithm that iscapable of detecting ! propertieswill exclude f” accidentally with
a probability bounded above by p*~1 - m!.

6.2 Relation to PAC-Learning

To illustrate the advantage of smaller hypothesis spaces, let us now combine the
bound of the Lemma with known results for base-level learning. It iswell-known
that the complexity of the base-level hypothesis space is related to the number
of training examples required for base-level learning (see eg., [32, 68, 19, 24]).
One learning model, which recently has received considerable attention in the
computational learning theory community, is Valiant’s PAC-learning model [67]
(PAC standsfor probably approximately correct). PAC-Learning extends Vapnik’s
approach to empirical risk minimization[68] by an additional computational com-
plexity argument. The following standard result by Blumer and colleagues rel ates
the size of the hypothesis space and the number of (noise-free) training examples
required for learning a function:
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Theorem [8]. Given a function f™ in a space of functions H, the
probability that any hypothesis h € H with error larger than < is
consistent with f* on a (noise-free) dataset of size N is less than
(1— &)Y |H]|. In other words,

> ﬁ (i +1n(3)) (12)

training examples suffice to ensure, with probability 1 — &, that any
hypothesis consistent with the data will not produce an error larger
than ¢ on future data

This bound is independent of the learning algorithm—it is only required that the
learning algorithm produces a hypothesis that is consistent with the data. 1t aso
holds independently of the choice of f" and the sampling distribution, as long
as this distribution is the same during training and testing. Notice that (12) is
logarithmic in the hypothesis set size | H|. An analogous logarithmiclower bound
can befoundin [13, 24].

By applying the Lemma to Blumer et a.'s Theorem (12), the advantage of
smaller hypothesis spaces can be expressed as the reduction in the sampling com-
plexity when learning the n-th function.

Corallary. Under the conditions of the Lemma, the upper bound on
the number of training examples according to Blumer et al.’s Theorem

is reduced by afactor of
) In(g)
1 - T~ (13)
In<g)+ln|H|

The probability that this reduction erroneously removes the target
function f™ from F is bounded above by p"~1 - m!.

Equation (13) is obtained from (12) and the Lemma. The following example
illustrates the Corollary numerically.

Numerical Example 2. Under the conditions of the first numerical
example (I = 3, p = 0.01, n = 11, m = 100) and with | H| = 10®
and & = 0.1, the upper bound (12) is reduced by a factor of % (eg.,
from 2061.9 to 687.3, if ¢ = 0.01). That means the guaranteed upper
bound on the sample complexity when learning the el eventh function
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isonly athird of the sample complexity when learning the first. The
probability that learning might now fail (by erroneously removing
the correct function from the hypothesis space) is bounded above by
10714,

These results shed further light onto the role of meta-level learning in lifelong
learning. The more properties of F' an agorithm discovers at the base-level, the
more dramatic the reduction of the sample complexity when learning a new thing.
On the other hand, there is the danger of accidentally assuming false properties.
Thisdanger increases with therichness of themeta-|evel hypothesisspace, and with
the sparseness of the support sets. Falsely assuming the existence of properties can
be considered a meta-level analogue to over-fitting. Hence, to improve base-level
learning, care hasto be taken to pick the “right” meta-level bias. If the meta-level
biasis appropriate, however, base-level learning can be improved grestly.

7 Related Approaches

Sampling complexity is currently one of the main obstacles for applying machine
learning to real-world problems. Recent research has produced a variety of ap-
proaches that aim to reduce the sampling complexity, in order to overcome this
fundamental scaling problem. They can roughly be grouped into the following
categories.

e Choosing learning parameters and algorithms. One of the earliest ap-
proaches that is able to learn at the meta-level is the VBMS system [46].
VBM S chooses the most appropriate algorithm out of apool of conventional
inductive learning agorithms based on previous, related learning tasks. A
related approach, the STABB algorithm [66], is able shift gradually towards
weaker bias. Bias is represented by a restriction on the hypothesis space
[32]. Whenever the hypothesis class cannot match the training examples
exactly, STABB analyzes thisfailure and enlarges the hypothesis space cor-
respondingly. STABB could potentially be applied to noise-free lifelong
concept learning tasks. In [36] an approach is described that estimates a
variety of learning parameters using cross-validation. In particular their
approach used yesterday’s training data to tune the learning parameters for
today’s learning experiments. Some of these parameters address different
memory-based generalization methods, others influence the relative weight
of instance features in a memory-based approach.
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All these approaches are capable of transferring knowledge, hence learn at
the meta-level. However, not much can belearned at the meta-level. Thisis
because their meta-level hypothesis spaces comprise only of a considerably
small number base-level learning parameters.

Learning invariances in face recognition. In the face recognition con-
text, techniques exist for learning the “directions’ (sub-manifolds) along
which face images are invariant. In [26], thisis done by learning changes
in activations when faces are rotated or translated, in a specific internal rep-
resentational space. These changes are assumed to be equivalent for all
faces—hence they can be used to project new faces back into a canonical
(frontal) view, in which they are easier to recognize. Beymer and his co-
authors[7] proposeto learnthe parametersfor therotation and changeinface
expression directly, using a supervised learning scheme. Both approaches
areinfact powerful lifelong learning approaches. They illustratehow acare-
fully designed meta-level bias can improvethe recognition rate dramatically,
in the domain of face recognition.

Learning distance metrics. Various researchers have proposed methods
for adapting the distance metric in memory-based learning [3, 36, 16, 20].
Methods for spotting irrelevant features aso fall into this category [27, 10].
With the exception of the (aforementioned) algorithm proposed in [36], all
these approaches focus exclusively on single learning tasks. However, they
could potentially be applied to lifelong learning, and so provide a good
basis for research on lifelong learning. As discussed above, the amount of
knowledge that can be transferred by these methods in their current formis
limited.

K nowledge-Based Approaches. Knowledge-based approaches to machine
learning investigate the feasibility of hand-coding prior knowledge into in-
ductive learning approaches. Various systems have been proposed for induc-
tively refining hand-coded domain theories (see eg., [6, 41]). For example,
EITHER [40] inductively refines an initial domain theory based on noisy
training data using 1D3 [45] as the inductive component. Neural network-
based methods [53, 18, 28, 65] basically initiaize neural network weights
using domain knowledge, then train the network using conventiona neural
network training algorithms.

All these approaches are rel ated to thework reported here, sincethey employ
prior knowledge to reduce the sample complexity. However, knowledge-
based |earning approaches require that an initial domain theory be available,
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which isusually provided by a human expert. Lifelong learning approaches
can be viewed as knowledge-based approaches that instead learn domain
knowledge.

e Other methods. Other methods, that fit neither of these categories, improve
the generalization accuracy of an inductive machine learning agorithm by
generating additional training data based on domain knowledge [43], adapt
data of multiple tasks to fit a single-task description [21], or provide more
flexible mechanisms to encode known invariances of the domain [56].

8 Conclusion

This paper studies approachesto lifelong learning. Inlifelonglearning, the learner
faces a collection of learning tasks over its entire lifetime. When faced with the
n-th thing to learn, knowledge acquired in the previous » — 1 learning tasks can
be used to bias learning the n-th. To elucidate mechanisms for the transfer of
knowledge, it is convenient to conceptually split lifelong learning agorithms into
two levels: the base-level and the meta-level. Base-level learning corresponds
to regular function fitting, using a single dataset. Meta-level learning addresses
learning bias for the base-level based on multiple datasets.

To illustrate the advantage of a lifelong perspective over conventional ap-
proaches to machine learning, four approaches were described and systematically
evaluated. All these approaches process multiple datasets, some of which stem
from previous learning tasks.

1. The first agorithm gradually learns a domain-specific data representation,
which improves the generalization in memory-based learning.

2. The second agorithm replaces the fixed distance metric in memory-based
learning by a domain-specific comparator function, which is learned using
previous datasets.

3. Thethird agorithm (see also [58, 52, 44, 9, 5, 55]) learns a domain-specific
representation, like the first algorithm, but this representation is tailored
towards neural network learning.

4. Finaly, thefourth algorithm, called EBNN, uses the comparator network to
deriveslopesfor thetarget function, which arefit along with the conventional
target values.
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All these agorithm integrate standard base-level learning with a meta-level com-
ponent, that allows them to transfer knowledge across multiple learning tasks. In
an empirical evaluation, it was shown that when facing the n-th learning task the
sample complexity can be reduced drastically by re-using knowledge acquired in
previous learning tasks. For example, after seeing a single image of each class
in the object recognition domain, the new approaches consistently generalized ap-
proximately 75% of unseen images correctly. Conventional approaches achieve
only approximately 60% generalization accuracy. This finding appears to be in-
dependent of the particular learning approach: Across the board, all approaches
generaize better if knowledge is transferred from previous learning tasks—an
observation that iswell in tune in what we know about human learning.

Despite these intriguing results, the reader should notice that this paper does
not provide a final answer to the lifelong learning problem, neither does it cover
the issues exhaustively. All approachesrest on several restrictive assumptions (see
also Section 1) that warrant further research:

1. Concept learning. This paper exclusively address concept learning prob-
lems, which are a version of supervised learning involving only two output
values. While it seems feasible to extend these approaches to supervised
learning in generdl, littleis known about the transfer of knowledge in other
learning paradigms, such as unsupervised learning [29, 50, 14, 25] or rein-
forcement learning [70, 59, 4, 23]. Some recent results for applying EBNN
to reinforcement learning can be found el sewhere [60, 61].

2. Support sets. In all experiments, it was assumed that al data be available
when learning the n-th function. Thisisclearly impractical if the number of
support setsislarge. Designing incremental lifelong learning algorithmsis
an important issue of future research. At first glance, it appears that train-
ing neura networks incrementally provides the desired solution. However,
whentrained with non-stationary data, neural networksmay quickly “forget”
previously learned knowledge, which can negatively affect the results.

3. Relatedness. It was explicitly assumed that all learning tasks were related
in the sameway. This assumption enabled our algorithmsto incorporate all
support sets with equal weight when learning at the meta-level. However, it
narrowsthe applicability of the methodsto caseswhereall learning problems
arevery similar. To giveasimpleexamplethat doesnot meet thisassumption
suppose in the object recognition domain, some tasks require a machine to
learn where in the image the object is, whereas othersrequire it to determine
what object it sees. Clearly, both families of tasks exhibit quite different
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invariances. In the latter case, shape and color matter but location does not,
whereas in the former case the oppositeis the case.

A key open problem in lifelong learning is the problem of discovering the
concreterel ation between multiplelearning tasks. Thecurrent algorithmscan
handle only asingletype relation, and produce only asingle base-level bias.
Algorithmsthat can handle awhole hierarchy of relations (rel ations among
points, among functions (or sets of points), and among sets of functions) are
clearly desirable and subject of ongoing research (see aso [64]).

Despitethese open questions, we envision avariety of practical application domains
for the methods and ideas presented here. Meta-level learning is particular rel evant
to learning problemsin which the cost of collecting training datais the dominating
factor when applying machine learning techniques. Such domains include, for
example, autonomous service robots, which are desired to learn and improve
over their entire lifetime. They include persona software agents which have to
perform various tasks for various users (hence can transfer knowledge among
them). Speech recognition, financia forecasting, and database mining are other,
promising application domains for the methods presented here.

The fundamental goal of this research is to scale up machine learning. Most
of machine learning has narrowly studied the problem of learning from single
datasets, isolated from amore general learning context. Learning single functions
inisolation imposesintrinsic scaling limitations. The central claim of this paper is
that learning becomes easier when embedded in a lifelong context. Recognizing
a complex concept in a high-dimensional feature space based on a single training
example is only possible if the learner is biased in the right way. The lifelong
learning provides the opportunity to learn the right bias, hence to “learn how
to learn” As argued in the introduction, the transfer of knowledge within the
lifetime of an individual has been found to be one of the dominating factors of
human learning and intelligence. If computers are ever to exhibit rapid learning
capabilities similar to that of humans, they will most likely have to follow the same
principles.
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